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I. INTRODUCTION

A series of high explosive tests is presently being conducted
for DARPA in the Grand Saline Sait Dome near Dallas, Texas. Phase I
of the experimental program consisted of passive measurements from
25 gm explosive charges detonated in the Hockley Salt Mine near
Houston, Texas. Phase II of the program involved passive
measurements from 200 pound charges of nitromethane and powdered TNT
(Pelletol), is near completion. In Phase III of the experimental
program, one-tamped 200 pound charge of Pelletol will be detonated
in the summer of 1982 and ground motion measurements made to
determine the extent of inelastic effects on velocity and
displacement pulses down to peak radial velocity of approximately
1 cm/sec.

In this report, we predict the ground motion from Phase II of
the Grand Saline experiment using computational constitutive models
and material properties for dome salt which have been normalized to
ground motion data from a number of nuclear and high explosive
events in salt. These events include GNOME, SALMON, STERLING, and
COWBOY (see Cherry and Rimer, 1980) The ground motion predictions
are made using our best guesses for site material properties (wave
speeds, strength, etc.) in the absence of laboratory or in situ
properties data from the Grand Saline site.

In Section II of this report, we discuss the normalization of
the constitutive models to the SALMON 5.3 KT nuclear event and
indicate the changes in material properties required to simulate the
COWBOY tamped high explosive (Pelletol) tests. OQur predictions for
the ground motion for Phase III of the Grand Saline experiment are
discussed in Section III. Plots of calculated velocities versus
time at 14 ranges from the explosive are given in the Appendix.
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II. THE CONSTITUTIVE MODEL FOR THE DOME TEST

The 5.3 KT SALMON nuclear event in the Tatum Salt Oome in
Mississippi provides a large subset of the available free-field near
source, ground motion data in the form of digitized records of
particle velocity versus time which are extremely consistent with
range from the working point. For this reason, the SALMON event was
chosen for the normalization of the constitutive model used in the
one-dimensional explosion calculations. The normalized model was
then applied to the remaining salt events GNOME, STERLING, and
COWBQY as described by Cherry and Rimer (1980) to show that a single
constitutive model could explain much of the salt ground motion
data. Here we detail the salt constitutive model and show some
results of the normalization.

Figure 1 shows the laboratory strength data for SALMON, GNOME,
and Polycrystaline salt. The curve shown in the figure fits the
data for SALMON and GNOME and was used in the model for the ultimate
strength of salt (YLim)'

The best agreement with the SALMON ground motion data was
obtained by assuming that salt work hardened to .its ultimate
strength., The expression used to calculate the strength (Y) as a
function of the inelastic energy (E) deposited in the material

during yielding was:

2

where Yo is the initial strength and & and e, are

respectively work hardening and work softening material constants.

If sij is the deviatoric component of the stress tensor and
)
JZ js the unadjusted second deviatoric invariant, then the
increment in inelastic energy becomes

AE = S.. a%,. . = Si' S'i 3Jé - !
gyt & - ¥

where
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2

3Jé >Y

T the deviatoric component of the inelastic strain tensor

u = the shear modulus .

This model 1is simple and easily implemented in a finite
difference st?ess wave code. Figures 2 through 7 show the agreement
between the SALMON particle velocity data (the solid curves) and the
calculations (the dotted curves) made with this model and the
normalizing material constants given in Table 1.

The work hardening aspect of the model was required in order
to explain a number of puzzling features of the particle velocity
data, the most important being a small amplitude “"elastic" precursor
which is not consistent with the laboratory strength measurements of
Figure 1 or with the overburden pressure at shot depth. In the data
of Figures 2 through 7, the "elastic” precursors have peak
velocities of approximately 0.3 - 0.4 m/sec, consistent with a
strength of approximately 25 bars. However, such a low strength at
a mean stress larger than the overburden pressure of approximately
175 bars would imply a velocity pulse width at least a factor of two
broader than the data.

This conflict between the low material strengths associated
with the precursor and the much higher strengths required to narrow
the pulse following the precursor can be resolved if salt is assumed
to work harden after the strength Y° of 25 bars is attained.
However, the strength of 25 bars is still much lower than would be
anticipated at the overburden pressure (see Figure 1). We concluded
that the rock does not feel the overburden, i.e., that the effective
stress is zero and Yo is the saturated strength of the rock. The
physical explanation for the work hardening during loading may be an
increase in the effective stress and, conversely, a decrease in pore
fluid pressure caused by dilatancy.

[t is interesting that salt apparently requires a constitutive
model different from those used for the rocks at NTS. They all have

S-CUBED
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Figure 2. Comparison between SALMON gauge 1E14-20 AR at a range of 274 m

and calculated velocity (the dotted curve).
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Table 1

MATERIAL PROPERTIES FOR DOME SALT

Property SALMON GNOME COWBOY
P-wave velocity (m/sec) 4,550 4,317 4,375
S-wave velocity (m/sec) 2,540 2,306 2,550
Density (gm/cc) 2.2 2.2 2.2
Y, (Kbar) 0.025 0.025 0.04
Lm(l(l:oar) 0.680 0.680 0.70
Hardening e (EE 6.E-5 6.E-5 6.E-5
Softening e, (erg 1.E-12 1.g-12 l.E-12

n
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one feature in common, however, namely that seismic coupling is
strongly influenced by low strength states, i.e., those that are
between the tensile strength and the unconfined compressive
strength. This reduction in strength has been attributed to pore
fluid pressure and effective stress. Therefore, the degree of
saturation at shot depth and the location of the water table are
critical seismic coupling site properties. In addition, it is
important that laboratory strength data be obtained for critical
rock types at stress states below unconfined compression.

The work hardening constants of the constitutive model for
salt were normalized to give best agreement with the measurements
from SALMON shown in Figures 2 through 7. Figure 8 compares the
calculated and observed peak velocities and peak displacements (the
stations of Figures 2 through 7 are identified in the figure by an
“X"). The results of two calculations are shown in this figure:
one (dashed curve) in which YLim equaled the maximum strength
(0.68 Kb) given in Figure 1, and the second (solid curve) in which

Y ;q varied with stress state (P) as shown in Figure 1.

Shear failure was calculated out to a range of 967 m. Beyond
this “elastic" radius, the peak velocity in the calculation is
determined by the precursor. Note that this "elastic" radius is
larger than all ranges of the‘NSALMON data shown in Figure 8.
Figure 9 shows the RVP spectra (|¥|) for the two calculations at the
ranges of Figures 2 through 7 and beyond the caculated elastic
radius where the spectra are invariant with range. Figure 10 shows
the spectra from beyond the elastic radius for the two calculations
together with the spectra of Springer, et al. (1968), which
represents an average of the free field SALMON data, and Murphy,
which was obtained by scaling the spectrum of the GNOME event to the
yield and depth of SALMON.

These results, involving comparisons between calculated and
observed ground motions and RVP spectra indicate that the
constitutive model adequately explains the SALMON data. The
constitutive model was then applied to the simulation of the 3.1 KT
GNOME event which was detonated in a salt medium near Carlsbad,
New Mexico. The calculation used the work hardening constants

12
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normalized for SALMON, the wave speeds measured for GNOME (see Table
1), and the GNOME overburden pressure of 80 bars, and gave a
calculated cavity volume within 9 percent of the measurement.

Figures 11 and 12 compare calculated and observed peak
velocities and peak displacements for this event. Figures 13 and 14
compare calculated and measured velocities at ranges of 229 and
298 m respectively. All show a precursor similar to that observed
for SALMON. The calculated elastic radius for the GNOME event was
790 m.

Figure 15 compares the Mueller-Murphy estimate of the GNOME
RVP  spectrum with the <calculated spectrum. Agreement is
surprisingly good considering that the Mueller-Murphy spectrum was
based on ground motion data at a range of 300 m, a distance well
within the region of nonlinear material behavior.

The constitutive model was next applied to the COWBQY tamped,
high explosive events in the Winnfield Salt Dome in Louisiana. The
nigh explosive, Pelletol, consisting of small pellets of TNT of
density 1 gm/cc, has not been well-characterized in the dry state
used for the COWBOY tests. Upon the recommendation of E. Lee of
Lawrence Livermore Laboratory, we used the JWL equation of state
constants for HNS powder (Lee, et al., 1976) which very closely
‘resembles TNT in composition and molecular structure, to
characterize Pelletol.

Calculations were made for COWBOY with these HE properties
both using the SALMON material properties and using the wave speeds
and strength modifications appropriate to COWBOY as given in
Table 1. Both calculations gave good agreement with the measured
peak velocities. Calculated peak displacements were a factor of two
higher than the measurements when SALMON material properties were
used and approximately 50 percent higher than the measurements when
COWBOY properties were used in the calculations.

Trulio (1978) recommended two modifications of the JWL
constants for HNS to better characterize the Pelletol explosive.
These were a reduction in the energy yield of the explosive from

16
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4.1 x 107" ergs/gm to 2.55 x 1 ergs/gm and a reduction in w
from 0.25 to 0.23 (w is the value of Y-1 in the ideal gas equation
of state of the expanded HE products). Calculations made with this
modified Pelletol equation of state gave good agreement with
measured peak velocities and peak displacements. These
calculational results were then used to make predictions for the
Grand Saline event in the absence of material properties information
from the site.

22
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II1. PREDICTIONS FOR THE GRAND SALINE EXPERIMENTS

At this time, material properties information about the Grand
Saline site (wave speeds, strength measurements, etc.) are not
available. For this reason, our predictions for Phase III, a tamped
200 pound Pelletol event at a hydrostatic overburden pressure of
approximately 60 bars (similar to COWBQY) will be based on results
from two calculations: one using our estimates of SALMON material
propert ies, and the other using the estimates of COWBOY properties,
both given in Table 1. In this way, we hope to bound the ground
motion from the upcoming experiment. The constituiive models for
salt, as discussed in Section II, are the same for both bounding
calculations, and both use the modified Pelletol equation of state
from Trulio (1978).

Figures 16 and 17 show the calculated peak velocities versus
range (scaled to 1 Kg, of Pelletol) using the material properties
from SALMON and COWBOY respectively. Measured peak velocities from
COwBOY, scaled to 1 Kg, are shown on the plots. Ffigures 18 and 19
show calculated peak displacements for 1 Kg of Pelletol together
with COWBOY data. Calculated “elastic" radii from the two
calculations are 5.19 meters and 3.80 meters respectively for 1 Kg
of Pelletol (23.3 meters and 17.1 meters respectively at the 200
pound yield of Phase III). Note that most of the scaled COWBOY data
lie outside of the calculated elastic or shear failure radii. This
was not true for the SALMON and GNOME data shown in Figures 8, 11
and 12.

geyond the elastic radius, the calculated peak velocities and
peak displacements shown in Figures 16 through 19 should vary
inversely with range (at a slope of minus 1 in the log-log plots)
denoting linear elastic behavior., However, these calculated peak
velocities and displacements attenuate at a faster than the elastic
rate because of the numerical artificial viscosity employed to
stabilize the finite difference calculations.

23
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using COWBOY material properties. COWBOY data is shown
scaled to 1 Kg.
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Figure 18. Calculated peak displacements versus range for 1 Kg of Pelletol

using SALMON material properties. COWBOY data is shown scaled
to 1 Kq.
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Figure 19. Calculated peak displacements versus range for 1 Kg of Pelletol
using COWBOY material properties. COWBOY data is shown scaled
to 1 Kg.
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The artificial viscosity used in the calculations is a Voigt
solid formulation in which the elastic constants k and u are
replaced by the operators k + k' i% and u *+ ' f%, where

k' = Cpaar (3.1)
u' =0 (3.2)

and ¢ is a constant, p is density, a is P-wave velocity, and ar is
the 2zone size wused in the calculation. This viscosity is
artificial, i.e., nonphysical because it depends on the zone size.

Fortunately, the affect of this type of viscoelasticity can
easily be removed from the wave field obtained from the
calculation. For example, if ¥(w,R) is the Fourier transform of the
reduced velocity potential (RVP) at a given radius, R, then for a
Voigt solid (Ewing, Jardetzky, and Press, 1957)

Y(w,R) = V(w)e~ ™ (3.3)
where
1 mz
T = 7 car’y . (3.4)
Q
a >> Carw (3.5)

A

and 6(0) is the elastic (distance invariant) RVP. Equations (3.3)
and (3.4) can also be used to obtain a frequency dependent Q for the
Voigt solid by recognizing that

R
R W . (3.6)
Therefore,
("] a
Q= Tta * Tuar . (3-7)

For "the COWBOY and Grand Saline 200 pound yield calculations,
we used the following parameters
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c = 0,125
a = 4,375 m/sec
ar = 0.25m

which, according to equations (3.4) and (3.7) gives

t =3.223 x 1078 £ (3.8)

q=2.23 x 10% ¢! (3.9)

with units of T in meters and f in hertz. At a freguency of 100
hertz, we find that Q equals 223 and &(w,R) decreases by 4 percent
between the *“elastic* radius (17.83 meters) and 150 meters.
Previous work has shown that a very low Q is required to produce the
attenuation rates shown in Figures 16 through 19. Equation (3.9)
does provide low Qs but at high frequencies. We find that in our
200 pound yield calculation that Q equals 40 at a frequency of
560 Hz and that at this fregency the RVP spectrum decreases by
75 percent between the elastic radius and 150 meters.

These results, while obtained for an artificial viscosity in
order to show how to correct the calculated RVP for the viscosity,
emphasize the importance of relating observed apparent attenuation
to the frequencies which control the apparent attenuation. For
example, the COWBOY data shown in Figures 16 through 19 show that
attenuation in salt is severe for frequencies on the order of 500
hertz, something that should not surprise us. However, this data
contains no information relevant to the issue of attenuation in the
teleseismic frequency band.

For a more complete discussion of near-field attenuation
models applied to COWBQY data, see Minster (1982). For our purposes
it is sufficient to note that all RVP spectra calculated here for
the Grand saline experiment involve viscoelastic attenuation given
by equations (3.6), (3.8), and (3.9). These equations show that the
computed RVP spectra can, for experimental purposes, be regarded as
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elastic for frequencies less than about 125 hertz, assuming that the
experiment will not be able to unambiguously resolve spectral RVP
amplitude changes of 5 percent over a distance of 130 meters.

Figure 20 shows the RVP spectra for the two calculations at a
yield of 200 pounds of Pelletol corresponding to Phase III of the
Grand Saline tests. The difference in amplitude is a measure of the
expected uncertainty due to choice  of material properties for salt,
in particular, the magnitude of Y, given in Table 1. Trulio
(1978) has publisned an RVP spectra obtained by digitizing a
velocity pulse, 63.4 meters from the 1,000 pounds COWBOY 11 event,
which is beyond the scaled elastic radius we calculate for COWBOY.
This spectra was shown scaled to the- SALMON yield using an
HE-nuclear equivalence relation, 2,000 pounds of Pelietol = 1.41
tons of nuclear energy. In order to compare our calculated spectra
with this published spectra, we scaled our results to SALMON yield
using the same scaling as reported by Trulio. Figure 21 compares
the calculational results with the spectra from COWBOY 11, as
published by Trulic. Good agreement between "measurement" and
calculation was obtained at frequencies above 1 hertz: The local
minimum in the COWBOY spectra at about 0.6 hertz may be an
indication of either two-dimensional effects or an incomplete
velocity pulse.

We present these results from our two calculations (peak
velocities, peak displacements, and RVP spectra) as a prediction for
the proposed 200 pound Pelletol event at the Grand Saline mine
(Phase [II). In the Appendix of this report, we present compiete
plots of velocity versus time at the same 14 ranges from the 200
pound event for each calculation, These may be interpolated to the
actual guage locations or simply scaled to the detonated yield if
different from 200 pounds of Pelletol.

In summary, we have normalized our computational constitutive

models and material properties for salt to the ground motion from
the SALMON, GNOME and COWBOY events., For our ground motion
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Figure 20. Computed RVP spectra at the elastic radii using SALMON material
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predictions for PHASE III of the Grand Saline experiments, we
assumed that site material properties are similar to those of the
normalizing events. Inelastic yielding is predicted by the finite
difference calculations to occur out to a radius of from 17 to 23
meters for 200 pounds of Pelletol explosive. A cavity radius of
52 centimeters is anticipated. B8ounding values of the RVP spectra,
based on our uncertainty in Grand Saline material properties, are
given in Figure 20.
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APPENDIX

In this Appendix we present plots of velocity versus time from
two predictive calculations of 200 1b Pelletol events in the Grand
Saline Salt Dome. Salt Run 603 refers to a calcuation made using
SALMON material properties and Salt Run 588 refers to calculations
using COWBOY material peroperties. €Each plot label shows the range,
R, in meters, and the maximum and minimum velocities calculated at
that range. The spike in tne negative pulses (at approximately
3 msec for a range of 1.1 m) is due to the opening and subsequent
closure of a tensile crack at a range of 1.0 m. This crack signal,
which may or may not have physical significance, did impact the
pulses at all other ranges.
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